Manifolds of Riemannian metrics with prescribed scalar curvature
نویسندگان
چکیده
منابع مشابه
Manifolds of Riemannian Metrics with Prescribed Scalar Curvature by Arthur E. Fischer and Jerrold
THEOREM 2. Assume J * V 0 . Writing UtQ=(je a o\0 )U&9 J(\ is the disjoint union of closed submanifolds. REMARK. If d i m M = 2 , e^J=^" 8 , and if d i m M = 3 , the hypothesis that 1F*J£0 can be dropped. The proof of Theorem 1 also allows us to conclude that a solution h of the linearized equations DR(g0) • h=0 is tangent to a curve of exact solutions of R(g)=p through a given solution g0, pro...
متن کاملPrescribed Scalar Curvature problem on Complete manifolds
Conditions on the geometric structure of a complete Riemannian manifold are given to solve the prescribed scalar curvature problem in the positive case. The conformal metric obtained is complete. A minimizing sequence is constructed which converges strongly to a solution. In a second part, the prescribed scalar curvature problem of zero value is solved which is equivalent to find a solution to ...
متن کاملHypersurfaces of Prescribed Scalar Curvature in Lorentzian Manifolds
The existence of closed hypersurfaces of prescribed scalar curvature in globally hyperbolic Lorentzian manifolds is proved provided there are barriers. 0. Introduction Consider the problem of finding a closed hypersurface of prescribed curvature F in a globally hyperbolic (n+1)-dimensional Lorentzian manifold N having a compact Cauchy hypersurface S0. To be more precise, let Ω be a connected op...
متن کاملCompact Riemannian Manifolds with Positive Curvature Operators
M is said to have positive curvature operators if the eigenvalues of Z are positive at each point p € M. Meyer used the theory of harmonic forms to prove that a compact oriented n-dimensional Riemannian manifold with positive curvature operators must have the real homology of an n-dimensional sphere [GM, Proposition 2.9]. Using the theory of minimal two-spheres, we will outline a proof of the f...
متن کاملRiemannian Manifolds with Positive Sectional Curvature
It is fair to say that Riemannian geometry started with Gauss’s famous ”Disquisitiones generales” from 1827 in which one finds a rigorous discussion of what we now call the Gauss curvature of a surface. Much has been written about the importance and influence of this paper, see in particular the article [Do] by P.Dombrowski for a careful discussion of its contents and influence during that time...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Bulletin of the American Mathematical Society
سال: 1974
ISSN: 0002-9904
DOI: 10.1090/s0002-9904-1974-13457-9